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Abstract
Non-Intrusive Load Monitoring (NILM) uses one
smart meter at the power feed to disaggregate the
states of a set of appliances. Multiple NILM me-
ters are deployed to achieve high monitoring accu-
racy in large-scale power systems. Our work stud-
ies the tradeoff between monitoring accuracy and
meter deployment, in a quantitative and extensible
way. In particular, we introduce a clearness func-
tion as an abstract indicator of expected monitoring
accuracy given any NILM method, and then show-
case two concrete constructions. With the notation
of a clearness function, we propose solutions to the
smart meter deployment problem (SMDP), that is,
the problem of finding a deployment scheme with
minimum number of meters while attaining a re-
quired monitoring accuracy. Theoretically, SMDP
is shown NP-hard and a polynomial-time approx-
imation scheme (PTAS) is proposed in this paper.
For evaluation, we show that our proposed scheme
is efficient and effective in terms of approxima-
tion ratio and running time. On real and simulated
datasets, our proposed framework achieves a higher
monitoring accuracy at a much lower cost, outper-
forming common baseline algorithms.

1 Introduction
Real-time monitoring on/off states of electrical appliances in
buildings is a crucial component for smart control systems.
Deploying smart meters on every appliance guarantees high-
fidelity appliance state monitoring [Jiang et al., 2009], but
the cost is unbearably high especially in the case of modern
commercial buildings with a huge number of appliances.

An alternative approach is Non-Intrusive Load Monitoring
(NILM) [Hart, 1992]: at the electrical feed of the appliances,
a meter is deployed to disaggregate their on/off states by pat-
tern analysis in temporal or frequency domain. Early works
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on NILM took advantage of steady-state power changes [Sul-
tanem, 1991; Marceau and Zmeureanu, 2000]. The key idea
is to detect jumps in active/reactive power patterns specific to
individual appliances, therefore it is more suitable for steady,
finite-state appliances. Harmonic analysis was used to iden-
tify continuously variable appliances [Laughman et al., 2003;
Lee et al., 2005; Berges et al., 2009]. Latest machine learning
techniques like support vector machine [Patel et al., 2007],
neural networks [Roos et al., 1994], sparse coding [Wang et
al., 2014], pattern recognition [Farinaccio and Zmeureanu,
1999] and a number of unsupervised learning methods [Shao
et al., 2013; Kolter and Jaakkola, 2012; Parson et al., 2012]
all found applications in the field of NILM.

While most aforementioned papers strive for better NILM
algorithms for accuracy and efficiency, scalability remains a
major limitation of NILM. In a single-meter NILM system,
monitoring error increases as the power system scales up.
Multiple NILM meters are required in a complex power sys-
tem. Considering the cost of the meters including deployment
and maintenance, it is desirable to use as few meters as pos-
sible while attaining a satisfactory monitoring accuracy. In
contrast to the extensively investigated NILM algorithms, the
problem of balancing deployment cost and monitoring accu-
racy lies greatly unexplored. Only few prior works studied
this problem (cf. [Jung and Savvides, 2010; Hao et al., 2012;
Bellala et al., 2012]). In this paper, we investigate the quan-
titative tradeoff between the meter deployment cost and the
NILM state monitoring accuracy. In particular, we propose:

• Clearness function For any power load tree with a me-
ter located at the root, a clearness function takes values
in [0, 1], where higher value indicates higher monitoring
accuracy. This notation induces a quantitative criteria
for monitoring accuracy.

• Smart meter deployment problem (SMDP) That is,
finding a meter deployment satisfying the quantitative
monitoring accuracy requirement with minimum num-
ber of meters. We show that SMDP is NP-hard and then
present a PTAS to approximately solve SMDP, which is
highly efficient for practice use.

• A framework for tradeoff The tradeoff problem could
be decomposed into two subproblems: 1) design a clear-
ness function for the underlying power model; 2) solve
the SMDP given the clearness function. This framework
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is generic in that it can easily incorporate with various
NILM methods, and algorithmic results and quantitative
relations will carry over naturally.

2 A Framework for Accuracy-Cost Tradeoff
This section devotes to the high-level idea of our framework
for tradeoff. We assume that the power network structure is
a priori knowledge, which is for example obtainable from the
blueprints [Jung and Savvides, 2010; Shao et al., 2013]. Fol-
lowing [Parson et al., 2012], we assume access to some basic
prior information of an appliance’s power pattern. However,
the on/off correlation between the appliances is unknown
since it is closely related to user behaviors.

2.1 Power Load Tree
Power network in a commercial building typically has a tree-
like structure, which is called power load tree (PLT) [Jung
and Savvides, 2010] and denoted by T (V,E). The root of a
PLT is the power entrance of a building. Each internal node
corresponds to a power break or an outlet, and each leaf node
corresponds to an electrical appliance. There is an edge ei,j ∈
E, if power flows through an internal node vi ∈ V to another
node vj ∈ V . Let ne be the total number of leaves (namely,
electrical appliances) and n = |V | be the number of nodes
in T (V,E). State monitoring is to track the on/off states of
the n appliances in real-time, i.e., a vector sv ∈ {0, 1}ne .
NILM methods have been employed in the task of tracking
sv accurately with multiple meters placed on nodes in PLT.

2.2 Multi-meter NILM
Since NILM meters measure power profiles, like current and
voltage, which are linearly additive. By assuming the meters
are reliable and accurate, a PLT with a (partial) deployment
D ⊆ V could be decomposed into several mono-meter trees.
Each mono-meter tree contains exactly one meter deployed at
its root. Also each appliance in the original PLT is assigned to
a mono-meter tree rooted at a closest meter-monitored node.
Let T (u) = (V (u), E(u)) be the subtree of T rooted at u.
For a meter deployed at u ∈ D, the mono-meter tree gen-
erated from this meter is Tm(u) = (Vm(u), Em(u)), where
Vm(u) = V (u) \ {w | w ∈ V (v), v ∈ D ∩ V (u) \ {u}},
Em(u) = {(v, w) | (v, w) ∈ E, v ∈ Vm(u), w ∈ Vm(u)}.
Fig 1 gives an example of mono-meter tree decomposition.

Since the correlation between appliances is unknown, the
on/off appliance states on mono-meter trees are decoded inde-
pendently. By such a decomposition, the original multi-meter
on/off decoding process is separated into several independent
single-meter on/off decoding process. Apparently, the multi-
meter decoding is acceptable only if the decoding accuracy
on each mono-meter tree is good enough.

2.3 Tradeoff Framework
The tradeoff between monitoring cost and monitoring accu-
racy can be easily seen from the mono-meter tree decompo-
sition. Deploying more meters at appropriate positions will
reduce the size of each meter’s appliance set. It also reduces
the probability of state ambiguity, which helps improve state

(a) Before (b) After

Figure 1: Mono-meter tree decomposition: a PLT rooted at
v0 is decomposed into mono-meter trees Tm(v0), Tm(v2),
Tm(v4), Tm(v5) by deploying meters at v0, v2, v4, v5. The
mono-meter reading of a meter is its own reading subtracted
by the sum of the readings of meters on its descendants. e.g.
the mono-meter reading on v0 is Z0 − (Z2 + Z4 + Z5).
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Figure 2: Accuracy-Cost Tradeoff Framework

decoding accuracy. To balance accuracy and cost, we pro-
pose a tradeoff framework consisting of two parts, as in Fig 2
– clearness function design and meter deployment.

Clearness Function Design Clearness function is a quan-
titative indicator of decoding quality of mono-meter trees. It
depends on the underlying NILM model, including power
patterns of the appliances, decoding algorithm and accuracy
requirements (Fig 2). For a given mono-meter tree, the clear-
ness function takes values in [0, 1], and a higher value indi-
cates a higher chance of correct decoding. For any deploy-
ment scheme, monitoring quality could be measured by com-
puting the clearness function for all mono-meter trees.

Meter Deployment Given the clearness function as a black
box, accuracy requirement can be stated as clearness function
on every mono-meter tree evaluates to a large enough value.
For any given accuracy requirement, Smart Meter Deploy-
ment Problem(SMDP) is the problem of finding a deployment
scheme with minimum number of meters while satisfying the
requirement. Later in this paper, we formalize this problem
and propose an efficient and effective solution.

3 Clearness Function Design
Construction of clearness function varies in different NILM
models. Many previous approaches on NILM [Leeb et al.,

2604



1995; Parson et al., 2012] assumed specific power patterns
and proposed decoding algorithms accordingly. In this case
the clearness function for each mono-meter tree could be cal-
culated by off-line simulations. However it is more common
that the NILM model, specially the decoding algorithm, is
not well-defined beforehand, whereby the design of clearness
function would be radically different.

For a mono-meter tree Tm(v), denote the set of appliances
in it as A(v). Let sv = {0, 1}|A(v)| be the appliance state
vector of Tm(v). For a fixed state sv , Rv(sv) is the set of all
possible readings on a single meter. Mathematically, we say
a reading Rv is ambiguous if there exist some sv1 6= sv2 , s.t.
Rv ∈ Rv(s1v) ∩ Rv(s2v), i.e., more than one state maps to
a same reading. Otherwise, if Rv has a unique pre-image sv ,
we say Rv is clear.

In a mono-meter tree Tm(v), only clear readings could be
decoded correctly. Clearness function fc(Tm(v)) is defined
in a way such that its value is proportional to the probability
of seeing clear readings. i.e.

fc(Tm(v)) ∝ Pr[clear readings] (1)

Next, we showcase constructions of clearness function for
two basic power patterns without specifying NILM decod-
ing algorithm. And we will evaluate the performance of our
tradeoff framework for these two models.

Example 1: Interval Power Pattern Model
In this model, power pattern is characterized as an interval
containing the majority of the probability mass. Specifically,
power pattern of the ith appliance is represented by a tuple
(pi, θi), where pi is its expected power consumption, and θi
is the deviation. θi is minimized such that the real-time power
consumption takes values in [(1−θi)pi, (1+θi)pi] with over-
whelming probability, e.g. 95%. For electrical appliances
like lights, computers and televisions, real-time power con-
sumptions are concentrated on their rated values. This model
precisely describes the appliance with concentrated power
consumption. However, for those appliances with constantly
changing power consumption, the deviation is large and it is
harder to decode their on/off states from an aggregated power
measurement.

For a mono-meter tree Tm(v) with nv appliances, the ex-
pected observation value and deviation for state vector sv are

E(sv) = svpvT , θ(sv) =
Σnv
i=1s

v
i p
v
i θ
v
i

Σnv
i=1s

v
i p
v
i

Ideally, all real-time power consumptions should fall into
their corresponding intervals, and the observed value for state
vector sv should fall into the observation interval Int(sv) =
[(1 − θ(sv))E(sv), (1 + θ(sv))E(sv)]. Therefore, the total
power consumption for Tm(v) must fall into one of the ob-
servation intervals. However, if some interval overlaps with
another, there is no guarantee that every value can be cor-
rectly decoded to a state vector – ambiguity happens. Let
Pr[Rv = x] be the probability of reading x, estimated by ex-
ploiting prior knowledge. The clearness function for interval
power pattern model is defined as:

fc(Tm(v)) := 1−
∫
x is ambiguity

Pr[Rv = x]dx (2)

In the case that Pr[Rv = x] is not given in closed form, the
clearness function is

fc(Tm(v)) := 1−

∫
x∈Int(sv1)∩Int(sv2),∀state vectors sv1 6=sv2

1 · dx∫
x∈Int(sv),∀state vector sv 1 · dx

(3)
The naı̈ve way to calculate fc(Tm(v)) is to enumerate all

possible range segments and scan each of them to get the
lengths of ambiguous part and clear part. This will not scale
well since for each Tm(v) with nv appliances, there are 2nv

possible segments. The exhaustive enumeration can be cir-
cumvented by dynamic programming, resembling the algo-
rithm for knapsack. The key idea is to map the observation in-
tervals to integers in [0, B], preserving order and B being the
maximum meter range; and then calculate how many times
each integer is mapped from those observation intervals. This
algorithm runs in O(B · nv +B2) time and O(B) space.

Example 2: Distributional Power Pattern Model
In reality, many appliance have multiple power consumption
states and each of the state have a certain probability to be on.
Appliance’s power consumption may follow a certain distri-
bution on those states. Here we introduce the distributional
power pattern model where each appliance’s consumption
distributes over a set of discrete values. Given a mono-meter
tree Tm(v) with nv appliances, let pv1, . . . , p

v
nv

be the power
patterns of appliances indexed by 1, . . . , nv . For appliance i
in Tm(v), pvi := {〈wvi,0, qvi,0〉, 〈wvi,1, qvi,2〉, ..., 〈wvi,mv

i
, qvi,mv

i
〉}

where wi,j is a power consumption value for appliance i and
qi,j is the corresponding probability. wi,0 = 0 is the power
consumption when the appliance is off.

To construct clearness function for distributional power
pattern model, we use the notation of entropy from infor-
mation theory, which is the average amount of information
for a random event. Summation of power consumptions can
be viewed as compression of the binary state vector svi . The
more information available from the readings, the easier it is
to achieve high monitoring accuracy. In light of the intuition,
the clearness function can be defined as the ratio of monitor-
ing entropy and on/off state entropy.

For Tm(v), the total entropy of appliance states is:

Hs(v) := −
∑

i∈T (v)

mv
i∑

j=1

qvi,j log qvi,j (4)

Let {rv1 , rv2 , . . . , rvMv} be the set of distinct meter readings,
each corresponds to at least one combination of appliance
states in Tm(v). ∀i ∈ {1, 2, ...,Mv}, let K(i) be the set of
tuples (k1, k2, . . . , knv ) such that

∑nv

j=1 wj,kj = rvi . Since
all the appliances take readings i.i.d. , it holds that

Pr[Rv = rvi ] =
∑

(k1,...,knv )∈K(i)

nv∏
j=1

qvj,kj (5)

where Rv is the reading at root v and nv is the number of
appliances in Tm(v). The entropy of the smart meter is then
defined as:

Hd(v) := −
Mv∑
i=1

Pr[Rv = rvi ] log Pr[Rv = rvi ] (6)
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Note that Hd(v) < Hs(v) implies that there are two different
states with the same aggregate power consumption. This am-
biguity prevents extracting exact states. Therefore, error-free
monitoring can be viewed as lossless compression. Namely,
fc(Tm(v)) = 1 if and only if Hd(v) = Hs(v)

However, requiring error-free monitoring is impractical be-
cause of inevitable noise and measurement errors. Here we
relax the condition from error-free to low-error, and we de-
fine the clearness function as

fc(Tm(v)) :=
Hd(v)

Hs(v)
(7)

In network science, entropy usually plays the role of a
metric in deployment schemes for data gathering system (cf.
[Guestrin et al., 2005; Bellala et al., 2012]). Instead of maxi-
mizing monitoring entropy, we seek to minimize the number
of deployed meters subject to the accuracy criteria that the
monitoring entropy remaining larger than a given threshold.

3.1 Clear Deployment Condition
In our setting, clearness indicates high accuracy monitoring
for each mono-meter tree. Because of the presence of noise
in practice, instead of requiring perfect state decoding, we
set a threshold τ ∈ [0, 1] for decoding error, which we call
clear ratio. Quantitatively, for a mono-meter tree Tm(v), if
fc(Tn(v)) is larger than a predefined τ , we say that Tm(v) is
clear; otherwise, it is ambiguous.

Similar to each mono-meter tree, the clearness of the PLT
indicates all appliances are monitored as accurately as re-
quired. Based on the mono-meter decomposition, we quan-
tify monitoring accuracy by the following,

Definition 1 (Clear Deployment Condition). Given a PLT
T (V,E) and a clear ratio τ , clear deployment condition for
a meter deployment scheme D = {v1, v2, . . . , vm} is that
∀v ∈ D, fc(Tm(v)) ≥ τ .

We would require deployments to satisfy clear deployment
condition, and to verify clear deployment condition it suffices
to evaluate fc(·) on each mono-meter tree. When fc(·) is
given, finding a minimum-cost deployment is independent of
the underlying power pattern model. Thus, our framework
can be extended to various NILM models.

4 Smart Meter Deployment
The clearness function quantifies state monitoring accuracy
of each mono-meter tree. Armed with this, our objective is to
find a deployment scheme with minimum number of meters,
such that all the mono-meter trees satisfy clear deployment
condition with respect to the clearness function. Formally,
we solve the following:

Problem 1. (Smart Meter Deployment Problem (SMDP))
INPUT A PLT T (V,E), a clearness function fc(·), a clear

ratio τ and a set of power patterns to compute clearness
function.

OUTPUT A set D ⊆ V , referred to as a deployment scheme,
indicating where meters are deployed, such that |D| is
minimized while satisfying clear deployment condition.

Algorithm 1 A PTAS for SMDP: ASMDP

1: INPUT : PLT T (V,E) with power patterns, clearness
function fc(·) and monitoring accuracy threshold τ

2: OUTPUT: A smart meter deployment D ⊆ V
3: Let v1, . . . , vn be the vertices in V in postorder
4: T 0 ← T , D ← ∅, I ← ∅
5: for i← 1 to n− 1 do
6: opt(T i−1(vi))←OPTDEPLOYMENT(T i−1(vi))
7: if opt(T i−1(vi)) ≥ 1 + d1/εe then
8: T i ← T i−1 \ T i−1(vi)
9: D ← D ∪ opt(T i−1(vi))

10: I ← I ∪ {i}
11: else
12: T i ← T i−1
13: end if
14: end for
15: D(vn)←OPTDEPLOYMENT(T n−1)
16: D ← D ∪ opt(T i−1(vi))
17: return D

In practice, PLTs usually have special structures that can
be exploited to design good deployment algorithms. In par-
ticular, we make a mild assumption that each node in the PLT
has degree upper bounded by a constant d. Consider Multi-
Cut, a variant of the unweighted multicut problem on trees
[Călinescu et al., 2003], that is, given an unweighted tree,
and some forbidden sets of leaves, find a set of edges of min-
imum size, whose removal separates at least one node pair
from each forbidden set. It can be shown that each instance
of MultiCut can be efficiently translated to an SMDP instance
with a clearness function exactly characterizing the forbid-
den sets. This enables us to show the NP-hardness of SMDP,
since MultiCut can be reduced from Exact-3SAT: let n be the
number of variables, and m the number of clauses; for each
variable x, construct a tree with leaves corresponding to x
and x̄, and a forbidden set containing the two leaves; for each
clause, construct a tree with three leaves corresponding to its
literals, and also three forbidden sets each containing two of
the leaves; all these trees are connected at the bottom layer of
a full binary tree with at least n+m leaves. It can be proved
that the Exact-3SAT instance is satisfiable if and only if the
constructed MultiCut instance has optimal value n+ 4m.

Suppose there exists an algorithm to compute fc(·) inO(1)
time1. Next we turn to present ASMDP, a polynomial-time
approximation scheme (PTAS). Let opt(T ) be an optimal so-
lution for SMDP on tree T = (V,E). The algorithm iter-
ates over the nodes of T in postorder. Let vi be the node
visited in ith iteration and T i be the PLT after ith iteration.
When visiting vi, if |opt(T i−1(vi))| ≥ 1 + d1/εe, we deploy
meters on opt(T i−1(vi)) ∪ {vi} and cut subtree T i−1(vi)
from T i−1. Otherwise directly visit next node vi+1. Pos-
torder traversal ensures that all the descendants of vi have
been visited before vi, so |opt(T i−1(u))| < 1 + d1/εe,
∀u ∈ C(vi), where C(vi) is the set of vi’s children. OPTDE-
PLOYMENT(·) returns an optimal deployment for a given tree.

1This is just for convenience sake, as long as it can be computed
in polynomial time, the later results will carry through.
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Since
⋃
u∈C(vi)

opt(T i−1(u))∪{vi} is feasible for T i−1(vi),
it holds that |opt(T i−1)(vi)| ≤

∑
u∈C(vi)

|opt(T i−1(u))| +
1 ≤ d(1 + d1/εe) + 1. Thus OPTDEPLOYMENT(T i−1(vi))
takes the following steps,

STEP 1 Enumerate all possible meter deployment schemes
of size no larger than dd1/εe+ d+ 1.

STEP 2 Filter out the schemes not satisfying clear deploy-
ment condition.

STEP 3 Choose the scheme with minimum size.

Based on the discussion above, we summarize ASMDP in
Algorithm 1. We also establish a series of lemmas to show
correctness and efficiency of ASMDP.

Lemma 1. D is a feasible solution to SMDP for T .

Proof. Let Si be the set of mono-meter trees generated from
opt(T i−1(vi)) on subtree T i−1(vi). All mono-meter trees in
Si are clear. The mono-meter trees generated from D on PLT
T is the union of Si, ∀i ∈ I. Therefore, clear deployment
condition is satisfied, which implies D is a feasible solution.

Lemma 2. |D| ≤ (1 + ε)|opt(T )|

Proof. Observe that for any subtree T (v), (opt(T )∩T (v))∪
{v} is a feasible solution for T (v), namely |opt(T )∩T (v)|+
1 ≥ |opt(T (v))|. Then,

|D| =
∑
i∈I
|opt(T i−1(vi)|

(Recall |opt(T i−1(vi)| ≥ 1 + d1/εe)
≤

∑
i∈I

(1 + ε)(|opt(T i−1(vi))| − 1)

≤ (1 + ε)
∑
i∈I
|opt(T ) ∩ T i−1(vi)|

= (1 + ε)|opt(T )|

Lemma 3. ∀i ∈ I, OPTDEPLOYMENT(T i−1(vi)) returns in
polynomial time.

Proof. There are O(ndd1/εe+d+1) possible deployment
schemes. For each scheme, there are at most dd1/εe+ d+ 1
corresponding mono-meter trees, so it takesO(dd1/εe+d+1)
time to test clear deployment condition for each of them.
In total, OPTDEPLOYMENT(T i−1(vi)) returns within time
O((dd1/εe+ d+ 1)ndd1/εe+d+1).

Lemma 4. ASMDP is a polynomial-time algorithm.

Proof. Running time of each iteration is dominated by OPT-
DEPLOYMENT(·). Combining Lemma 3, ASMDP runs in
O((dd1/εe+ d+ 1)ndd1/εe+d+2) time, which is polynomial
in n for ε > 0.

Theorem 5. For any fixed ε > 0, ASMDP is a polynomial-
time algorithm that outputs an (1 + ε)-optimal solution.

Proof. Correctness, approximation ratio and efficiency fol-
low from Lemma 1, Lemma 2 and Lemma 4 respectively.

The output of ASMDP goes arbitrarily close to optimal by
shrinking ε, but the running time goes up rapidly at the same
time. In our later evaluation, we set ε = 1, a balance in ap-
proximation ratio and running time.

5 Evaluation
We carry out experiments using simulated and real data to
evaluate the effectiveness of clearness function andASMDP’s
performance, through comparison with three baselines:

Dense deployment deploy meters at all appliances
Random deployment deploy meters uniformly randomly
Following the electrons (FE) a greedy algorithm proposed

in [Bellala et al., 2012] to maximize information ac-
quired with a given number of meters.

5.1 Experiments on PowerNet Dataset
The first experiments are conducted on real-world data from
PowerNet 2. PowerNet provides per-device energy and usage
statistics of an office building in Stanford University. More
specifically, we use data collected from 126 different appli-
ances in Sept. 2011. Sampling rate is basically 1Hz. To neu-
tralize noise, each appliance’s consumption is smoothened by
taking the average consumption of intervals of 30 seconds as
data points. Fig. 3 shows the real-time power measurements
of three appliances on Sept. 25, 2011.

Power Pattern Analysis
We first investigate the concentration property of each ap-
pliance’s power consumption. An appliance is said having
power consumption concentrated on pm at level θ, if there
exists a pm, such that 95% of the readings of the appliance’s
consumption are in the interval [pm(1 − θ), pm(1 + θ)]. In
our data set, 73%, 77% and 89% of all the appliances have
concentrated power consumption at levels 3%, 5%, and 10%
accordingly. This justifies the interval power pattern model.
Further, Fig. 4 shows the histogram of the concentrated pow-
ers of all the appliances at level 5%. One may observe that
the majority of the appliances have concentrated power con-
sumption less than 50W; the distribution is fairly flat in the
interval between 50W and 250W. 2 appliances with power
consumption far more than 500W are omitted in the figure.

Cost-saving Performance
Since PowerNet does not provide the PLT explicitly, we sim-
ulate the power network with randomly generated PLTs and
put 126 appliances at leave nodes. We evaluate the cost-
saving performance of ASMDP on random PLTs with aver-
age degrees of 2, 4, 6 and 8. We define cost ratio as the
number of deployed meters divided by the number of appli-
ances. Intuitively, a smaller cost ratio is preferable. As an
extreme example, in a dense deployment where every appli-
ance is monitored by a meter, the cost ratio is always 1.

Cost ratio for each generated PLT is calculated and de-
picted in Fig. 5. It can be observed that the number of meters

2PowerNet: http://powernet.stanford.edu/
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Table 1: Monitoring Accuracy and Clear Ratio
Clear Ratio 1 0.9 0.8 0.7 0.6
Accuracy(%) 99.5 97.1 96.5 92.4 87.4
Clear Ratio 0.5 0.4 0.3 0.2 0.1
Accuracy(%) 77.6 74.8 52.7 31.8 10.4

needed and the topology of the underlying PLT are closely
related. Larger average degrees generally imply more meters.
Moreover, the number of required meters increases with the
clear ratio τ . For each value of τ , we run ASMDP on 20 ran-
domly generated trees. The error bar is the standard deviation
of 20 runs. As shown in Fig. 5, even in the worst case, the
cost ratio of ASMDP is about 0.7, outperforming dense de-
ployment (cost ration = 1) by 30%.

Monitoring Accuracy Performance
To evaluate state monitoring accuracy, we run Viterbi-based
state decoding in each meter’s subtree based on [Wang et al.,
2012]. State decoding experiments are conducted on ran-
domly generated PLTs with average degrees 4 and 6. Ta-
ble 1 presents the relation between state decoding accuracy
and clear ratio, which are, as expected, positively correlated.
This result justifies clear ratio as a reasonable metric for state
decoding during meter deployment.

5.2 Simulations

There are only limited types of appliance power patterns in
PowerNet. For comprehensiveness, we evaluate ASMDP’s
performance on simulated data with diverse power patterns.

Impact of Power Consumption Distribution
We generate datasets from three different power pat-
terns: uniform distribution U(0, 1000), normal distribution
N (500, 1672) and exponential distribution with λ = 0.002.
Here we assume all appliances have concentrated power with
θ = 0. Fig. 6 shows the cost-saving performance for clear ra-
tio τ = 1. For different sizes and structures of PLTs, ASMDP

always achieves cost ratios less than 0.3. Cost ratios for expo-
nential and uniform power distributions are close. In contrast,
the cost ratio for normal distribution is significantly higher.
The intuition behind is that, the power levels of appliances
are more concentrated in the normal distribution, thus more
smart meters are required to disambiguate the states of those
appliances with similar power patterns.
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Comparison of Accuracy
We further compare ASMDP with random meter deployment
and FE in terms of accuracy aspect. Distinct from previous
evaluations, here distributional power pattern model is used.
Entropy ratio is defined as re = minv∈D fc(v), which works
as a metric for monitoring accuracy. As shown in Table 1, a
larger re indicates a higher monitoring accuracy at the worst
monitored appliance, and hence a better monitoring perfor-
mance. We compare entropy ratios of different deployments
at the same deployment cost.

The simulation is conducted on a PLT with 200 nodes, in-
cluding about 120 appliances. Power consumption of each
appliance is uniformly randomly sampled from a distribu-
tion shaped resembling the histogram in Fig. 4 with mean 50
watts. The results are summarized in Fig. 7. The entropy ratio
increases as the number of meters increases for all three algo-
rithms. BothASMDP and FE beat random deployment easily.
ASMDP always outperforms FE when cost ratio is < 0.2. For
example, at entropy ratio re = 0.8, ASMDP costs 40% less
than FE. As cost ratio approaches 0.2, both ASMDP and FE
already achieves entropy ratio 1, which is the theoretical limit.
This is also achievable by a random or dense deployment, but
at a much higher cost.
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6 Conclusion and Future Work
This paper presented an extensible framework to investigate
the tradeoff between meter deployment cost and appliance
state monitoring accuracy. We answered two questions: 1)
how to evaluate the quality of a deployment; and 2) how to
find a good deployment. In particular, we proposed clear de-
ployment condition to characterize when a deployment sat-
isfies the monitoring accuracy requirements. Based on it,
an efficient and effective deployment optimization algorithm
was developed. The validity and effectiveness of our ap-
proach was then verified both theoretically and experimen-
tally. There are multiple ways that our work can be extended.
For example, our framework could be applied in monitoring
appliances with multi-mode, dynamic power patterns. An-
other possible direction to further reduce the number of smart
meters is by identifying and tracking only major energy con-
sumers.
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